The revealed changes can be explained by tumor intoxication, cardiotoxic effects of cytostatics, rheological disorders in the coronary vessels in patients with high leukocytosis, anemia, and in some cases lymphoid infiltration of the myocardium. Dilatation of the cavities of both ventricles, an increase in their size and corresponding volumes, a decrease in the ejection fraction were diagnosed only in CLL patients in stage C (with the presence of anemic syndrome). Patients with CLL are people, in the overwhelming majority of cases, elderly, many of them had coronary heart disease, which also contributed to the violation of the LV myocardium and the development of circulatory failure.
Ultrasonic examination of the diaphragm in patients of group I showed no significant changes compared to controls. The thickness of the diaphragm (TD) did not differ from that in the control group. The position, shape, echogenicity of the diaphragm also did not change. Excursion of the diaphragm with calm (EDS) and forced (EDF) breathing did not differ from control. In patients with group II, the thickness of the diaphragm did not change. But the echo structure of the diaphragm became non-uniform, flattening of its dome was noted. The excursion of the diaphragm during calm and forced breathing decreased significantly. In group III, the largest morphological changes in the diaphragm were revealed. The dome was not clear. Its echostructure became non-uniform. Significantly decreased excursion of the diaphragm with calm and forced breathing.Violation of the excursion of the diaphragm and its morphological reorganization, in case of CLL, contributes to severe hepato- and splenomegaly, which occur in the majority of patients of groups II and III. Compression of the diaphragmatic muscle with enlarged liver and spleen significantly reduces its mobility and is one of the causes of the onset of severe and prolonged bronchopulmonary pathology in CLL. Another cause of dysfunction of the diaphragm in CLL is its specific leukemic lesion.Another cause of dysfunction of the diaphragm in CLL is its specific leukemic lesion.Another cause of dysfunction of the diaphragm in CLL is its specific leukemic lesion.
A correlation analysis was performed between indicators of pulmonary and intracardiac hemodynamics, the functional state of the diaphragm, respiratory function and blood gas composition in CLL patients at different stages of tumor progression. Patients of groups II and III showed a significant correlation between a decrease in the excursion of the diaphragm with a quiet and forced breathing and a decrease in the MOR of the lower and middle zones of the lungs. In the second group, the correlation coefficient between the decrease in the EDF and the decrease in the MOR of the lower zones was 0.87 (P <0.001); between a decrease in EDF and a decrease in the MOB of the middle zones of 0.68 (P <0.01). The correlation coefficient between the decrease in the EDS and the decrease in the MOR of the lower zones was 0.72 (P <0.01); between a decrease in the EDS and a decrease in the MOB of the middle zones of 0.64 (P <0.05). In group III, a clear correlation was also diagnosed between a decrease in EDF and a decrease in the MOBR of the lower (0.66; P <0.05) and medium (0.65; P <0.05) zones of the lungs. The correlation coefficient between the decrease in the value of the EDS and the decrease in the MOR of the lower zones was 0.64 (P <0.05), the middle zones 0.62 (P <0.05). No significant correlation was found between the EDF, EDS and MOBP indices of the upper zones of the lungs in patients with CLL. Correlation analysis confirms the assumption of the important role of a violation of the excursion of the diaphragm in CLL patients in reducing the ventilation capacity of the lower and middle zones of the lungs and the redistribution of ventilation in the upper zones.